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Abstract. Based on the path integral approach the partition function of a many body system with separable
two body interaction is calculated in the sense of a semiclassical approximation. The commonly used
Gaussian type of approximation, known as the perturbed static path approximation (PSPA), breaks down
near a crossover temperature due to instabilities of the classical mean field solution. It is shown how the
PSPA is systematically improved within the crossover region by taking into account large non-Gaussian
fluctuations and an approximation applicable down to very low temperatures is carried out. These findings
are tested against exact results for the archetypical cases of a particle moving in a one dimensional double
well and the exactly solvable Lipkin-Meshkov-Glick model. The extensions should have applications in
finite systems at low temperatures as in nuclear physics and mesoscopic systems, e.g. for gap fluctuations
in nanoscale superconducting devices previously studied within a PSPA type of approximation.

PACS. 05.30.-d Quantum statistical mechanics – 24.60.-k Statistical theory and fluctuations –
74.25.Bt Thermodynamic properties – 21.10.Ma Level density

1 Introduction

Thermodynamic properties of interacting many body sys-
tems are of fundamental interest for all kinds of condensed
matter. A particular challenge has been the temperature
range where strong quantum effects render simple mean
field theories insufficient. For finite systems with separa-
ble two-body interaction much can be gained by relying on
approximate techniques to evaluate the partition function.
Typical examples include certain mesoscopic systems, e.g.
ultrasmall superconducting metallic grains [1] on which
substantial research has focused recently.

A very elegant approach to approximate the partition
function is provided by the path integral formalism. There,
the usual trick [2,3] is to turn the two-body interaction via
a Hubbard-Stratonovich transformation into terms con-
taining only one-body operators and an auxiliary field.
While the static part of this field determines the static
mean field result, many body quantum fluctuations are
encoded in its dynamical part. The latter one can system-
atically be accounted for in the sense of a semiclassical ap-
proximation. Accordingly, a static approximation has been
developed originally in order to study finite size effects in
small superconductors [4]. The static path approximation
(SPA) has also been used in nuclear physics to calculate
thermodynamic properties and level densities of hot nu-
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clei [5]. Later it has been extended by the SPA+RPA [6],
the perturbed static path approximation (PSPA, the name
which we take over in the following) [7], or the corre-
lated static path approximation (CSPA) [8,9]. These ap-
proaches account for small Gaussian fluctuations around
the classical mean field and are thus applicable in a tem-
perature range where quantum effects are no longer negli-
gible. This way, from the approximate partition function a
variety of thermodynamic quantities have been calculated
in the literature: the free and internal energy, the specific
heat and the level density of the system [6,7,10,11]. In
addition thermal expection values of observables [7] and
strength functions [7,9] have been deduced. While many
of these calculations have been carried out in exactly solv-
able models [6–9] also reasonable agreement with experi-
mental data was shown for the level density of finite nu-
clei [10,11]. Further, the formalism has been put forward
in [11] to take into account the coupling to the continuum
and in [12] an extension of the PSPA to describe dissipa-
tive decay out of metastable states has been developed in
a self-consistent fashion. Very recently, the improvements
of the SPA have been applied to small strongly correlated
condensed matter systems. For example, using the CSPA
odd-even effects in small superfluid systems [14] and moti-
vated by new experiments on ultrasmall superconducting
metallic grains [1] gap fluctuations and pairing effects in
finite size superconductors have been examined [15].
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As noted above, these conventional improvements of
the SPA take into account quantum effects on the RPA
level only, i.e. Gaussian fluctuations, and thus, are plagued
by the problem that they break down at a certain tem-
perature T0. Physically, at this temperature the classical
mean field solution becomes unstable in functional space
and large fluctuations render the Gaussian approximation
insufficient. This has some features in common [13,12]
with the change of stability at a crossover temperature
occuring in the description of dissipative decay e.g. in
Josephson junctions [16] but is different in detail. By thor-
oughly analysing the appearence of instabilities for the
many body problem at lower temperatures, we go beyond
the PSPA to achieve a smooth behavior around T0. For
temperatures sufficiently below T0 the partition function
is dominated by field configurations away from the clas-
sical mean field around which a Gaussian approximation
is again valid. In this paper we lay out the general theory
and discuss its validity in comparison to exactly solvable
models before it can be applied to realistic systems.

We start with a brief outline of the main results of the
conventional PSPA and introduce the notation used in
the sequel (Sect. 2). The extension of the PSPA around
the critical temperature T0 is developed in Section 2.2
which in Section 2.3 allows for a treatment of the tem-
perature range far below T0. In Section 3 our results are
first applied to a one-dimensional double well, before in
Section 4 we turn to the thermodynamic properties of the
Lipkin-Meshkov-Glick model [17].

2 Partition function of an interacting many
body system

In this paper we want to approximate the partition func-
tion of a system described by a Hamiltonian of the follow-
ing structure

Ĥ = Ĥ +
k

2
F̂ F̂ . (1)

Here Ĥ and F̂ are hermitian one body operators and the
product F̂ F̂ mimics an effective separable two body inter-
action. In the sequel, for the general analysis we always
assume [Ĥ, F̂ ] 6= 0, the simplification to the case of com-
muting operators is straightforward. Further, the coupling
constant k = −|k| is taken to be negative (attractive in-
teraction) [18] according e.g. to isoscalar modes. The ef-
fect of repulsive interaction has been studied in [19]. The
ansatz (1) defines a minimal microscopic model for a sys-
tem with one collective degree of freedom [18]. An exten-
sion of the methods proposed in this paper to systems
with more (independent) collective degrees of freedom is
then feasible, though it may be tedious in detail.

The partition function of the grand canonical ensemble
reads

Z(β) = Tr exp
(
−β(Ĥ − µÂ)

)
= Tr Û , (2)

where β = 1/T is the inverse temperature (in units with
kB ≡ 1) and the chemical potential µ keeps the particle
number 〈Â〉 fixed on average. In principle, one should work
with truly fixed particle numbers, i.e. within the canoni-
cal ensemble. However, as we are mainly interested in the
dependence of system properties on excitation energy or
temperature, it is more convenient to exploit (2). A very
elegant way to do this is to represent Z(β) as a func-
tional integral in imaginary time [2], which also allows to
systematically include fluctuations around the mean field.
Given the form of the Hamiltonian in (1) the mean field
approximation starts with a Hubbard-Stratonovich trans-
formation [20] of the imaginary time path integral corre-
sponding to (2). Accordingly, the product F̂ F̂ is split by
introducing an auxiliary path q(τ) as a collective variable.
Since this procedure is well-known (see e.g. [7,2,3]) we
simply state here the basic results which will then serve
as the starting point for our analysis1.

After introducing the Fourier expansion

q(τ) = q0 +
∑
r 6=0

qr exp(iνrτ) , q−r = q∗r , (3)

with the Matsubara frequencies

νr =
2π

~β
r ≡ 2π

~
rT , r = ±1, ± 2, ± 3 . . . , (4)

the partition function may be written in a form containing
a static, i.e. q0 dependent, part and a dynamical factor,
namely,

Z(β) =

√
β

2π|k|

∫ +∞

−∞
dq0 exp[−βFSPA(β, q0)] C(β, q0).

(5)

Here

FSPA(β, q0) =
1

2|k| q2
0 − 1

β
ln z(β, q0) (6)

plays the role of an effective static free energy. It is not
the free energy F(β) = −T lnZ(β) of the total self-bound
system, but the one of the constituents moving in a mean
field that is kept fixed at the static collective variable q0.
For this reason we call FSPA(β, q0) the “intrinsic free en-
ergy” from now on, where the index “SPA” already refers
to the simplest “static path approximation” to (5) (see
Sect. 2.1). In (6) there appears the grand canonical parti-
tion function

z(β, q0) = Tr exp
(
−β(ĥ0(q0) − µÂ)

)
=
∏

l

(1 + exp (−β(εl(q0) − µ))) (7)

1 We note that our notation has been adapted to the one
used in [21,12] and relates to that of [7] in the following way:

Ĥ0 ↔ K, F̂ ↔ V , k < 0 ↔ −χ < 0, q ↔ χσ, z ↔ ζ0, C ↔ ζ′
0,

~ ↔ 1.
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belonging to the static part of the Hamiltonian (1) in mean
field approximation

ĥ0(q0) = Ĥ + q0 F̂ . (8)

Obviously, ĥ0(q0) is a sum of only one body operators with
eigenenergies εl(q0).

All contributions from the dynamical part of the aux-
iliary path q(τ) are contained in the factor C(β, q0) which
can be formally written as [7]

C(β, q0) =
∫

D′q exp

(
− β

|k|
∑
r>0

|qr|2 + ln〈Ûq〉q0

)
(9)

with the measure

D′q = lim
N→∞
Nε=~β

(N−1)/2∏
r=1

β

π|k| dRe(qr) dIm(qr) . (10)

Here, the thermal expectation value of the evolution op-
erator Ûq has to be evaluated with respect to the static
one-body Hamiltonian (8) and reads in terms of a time-
ordered product

〈Ûq〉q0 =

〈
T̂ exp

(
−1

~

∫
~β

0

dτ ĥ1(τ, qr)

)〉
q0

· (11)

The “dynamical” Hamiltonian

ĥ1(τ, qr) = F̂ (τ) δq(τ) (12)

with δq(τ) = q(τ) − q0 may be understood as the time
dependent correction to the static mean field Hamiltonian
ĥ0(q0) given in (8). Hence, it is convenient to work in
an interaction picture based on ĥ0(q0) and define time
dependent operators as, e.g.

F̂ (τ) = eĥ0(q0)τ/~ F̂ e−ĥ0(q0)τ/~ . (13)

The partition function (5) together with (6) and (9) is
still exact, however, written in a way which allows for a
systematic approximative evaluation. Namely, all quan-
tum fluctuations, i.e. modes with Matsubara frequencies
νr 6= 0, are hidden in 〈Ûq〉q0 . Thus, the basic idea is to
successively account for dynamical information in Z(β)
by expanding the thermal expectation value 〈Ûq〉q0 around
its static value in terms of the deviations δq(τ). This way,
generalizing equation (27) of [7] to fourth order in the qr

one finds:

ln 〈Ûq〉ePSPA
q0

=
1

2! ~2

∑∫
qrqs eiνrτreiνsτs 〈T̂ F̂ (τr)F̂ (τs)〉q0

+
1

3! ~3

∑∫
qrqsqt eiνrτreiνsτseiνtτt

×〈T̂ F̂ (τr)F̂ (τs)F̂ (τt)〉q0

+
1

4! ~4

∑∫
qrqsqtqu eiνrτreiνsτseiνtτteiνuτu

×〈T̂ F̂ (τr)F̂ (τs)F̂ (τt)F̂ (τu)〉q0

− 1
8 ~4

∑∫
qrqsqtqu eiνrτreiνsτseiνtτteiνuτu

×〈T̂ F̂ (τr)F̂ (τs)〉q0 〈T̂ F̂ (τt)F̂ (τu)〉q0

+O(q5
r). (14)

The symbol
∑∫

abbreviates summation over all involved
r, s, . . . 6= 0 and integration of all involved τr, τs, . . . from
0 to ~β. Because of the τ -integrations and the fact that
〈F̂ (τ)〉q0 is τ -independent all terms involving such a factor
– for instance terms linear in qr – vanish immediately and
are therefore omitted in (14).

2.1 Conventional PSPA – Expansion to second order

The simplest approximation to Z(β), coined the static
path approximation (SPA), neglects all dynamical con-
tributions, i.e. one puts ĥ1(τ, qr) ≡ 0. As a result
CSPA(β, q0) ≡ 1. The SPA is the classical limit where all
many body quantum fluctuations are absent. For lower
temperatures when quantum properties tend to become
important, fluctuations around the classical limit can be
incorporated within the conventional version of the per-
turbed static path approximation (PSPA). There, the ex-
pansion (14) is truncated after the second order terms in
the qr [6–12,14,15], which effectively means to describe
quantum effects on the RPA level. Within the PSPA the
dynamical factor C(β, q0) is approximated by [12]

CPSPA(β, q0) =∫
D′q exp

(
− β

|k|
∑
r>0

(1 + kχ(q0, iνr)) qrq−r

)
. (15)

Here, the FF-response function χ(q0, ω) defined by

δ〈F̂ 〉q0(ω) = −χ(q0, ω) δq(ω) (16)

has to be evaluated at the Matsubara frequencies iνr along
the imaginary axis. Because of q−r = q∗r all integrals
in (15) are of Gaussian type, and cause no problem as
long as

λr(β, q0) ≡ 1 + kχ(q0, iνr) > 0 for all r > 0 . (17)

For systems with q0-regions where the local RPA frequen-
cies ων(β, q0) obtained by the condition 1+kχ(q0, ων) = 0
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are purely imaginary equation (17) defines a condition for
that temperature below which the conventional version of
the PSPA breaks down due to a vanishing λ1(β, q0). This
breakdown temperature T0 where λ1(1/T0, q0) = 0 for the
first time is known from the theory of dissipative tunnel-
ing [22] as the “crossover temperature” (for many body
systems see [12])

T0 = maxq0

~ |ωinst
ν (q0)|
2π

(18)

with ωinst
ν (q0) as imaginary local RPA frequencies. Now,

the condition (17) is guaranteed for all T > T0 and
we obtain for the partition function within conventional
PSPA [7,12] the integral (5) with the dynamical factor
C(β, q0) providing improvement over pure SPA taken as

CPSPA(β, q0) =
∏
r>0

1
λr(β, q0)

· (19)

2.2 Extended PSPA – Expansion to fourth order

The instabilities that lead to the breakdown of the conven-
tional PSPA at T0 are due to the fact that all fluctuations
qr are treated only up to second order. Since the Gaussians
in qr have a typical width (see (15))

∆r =

√
|k|

2βλr(β, q0)
=

√
|k|T

2λr(β, q0)
, (20)

first ∆1 grows as temperature approaches T0 from above,
i.e. λ1(β, q0) → 0. Correspondingly, fluctuations in q1-
direction increase which in turn renders the Gaussian ap-
proximation for the q1-mode insufficient. In contrast, the
other amplitudes q2, q3, . . . remain still sufficiently small
for a harmonic approximation to be valid. Therefore in
the expansion (14) terms higher than second order must
be taken into account only for the q1 and q−1 mode. This
is very similar to the procedure used in the framework of
dissipative tunneling in order to overcome the irregularity
of the decay rate at T0 [22]. Working along these lines a
consistent approximation to the partition function (5) is
obtained for temperatures near T0 by taking for C(β, q0)

CePSPA(β, q0) =
∫

D′q exp
(
− β

|k| A(β, q0, qr)
)

. (21)

The relevant effective multidimensional fluctuation poten-
tial turns out to be

A(β, q0, qr) =
∑
r>0

λr(β, q0) qrq−r + 3c+
3 (β, q0) q2

1q−2

+ 3c−3 (β, q0) q2
−1q2 + 6c4(β, q0) q2

1q
2
−1. (22)

Here, other terms e.g. of the type q1qsq−s−1 or q1q−1qsq−s

(s > 1) are negligible in the sense of a semiclassical ap-
proximation as they contribute only in lower order [22].

The relevant coefficients containing third and fourth or-
der F̂ correlations read:

c+
3 (β, q0) = (23)
−|k|/β

3! ~3

∫
eiν+1τreiν+1τseiν−2τt 〈T̂ F̂ (τr)F̂ (τs)F̂ (τt)〉q0

c−3 (β, q0) = (24)
−|k|/β

3! ~3

∫
eiν−1τreiν−1τseiν+2τt 〈T̂ F̂ (τr)F̂ (τs)F̂ (τt)〉q0

c4(β, q0) =
−|k|/β

4! ~4

∫
eiν+1τreiν+1τseiν−1τteiν−1τu

×
(
〈T̂ F̂ (τr)F̂ (τs)F̂ (τt)F̂ (τu)〉q0

− 3〈T̂ F̂ (τr)F̂ (τs)〉q0〈T̂ F̂ (τt)F̂ (τu)〉q0

)
.

(25)

The integrals symbolize integrations over all involved τ
from 0 to ~β. Mind that only Matsubara frequencies with
indices r, s, t, u = ±1,±2 enter these formulas. The ex-
plicit evaluation of these coefficients is a crucial step in
order to apply the ePSPA to many body systems as we
will demonstrate in detail in Section 4.1. In particular, we
will prove in Section 4.1 (see (46)) that the τ integrations
of (14) imply the sum rule r+s+t+ . . . = 0 for the indices
involved which considerably simplifies the calculation.

Let us now turn to the qr integrals in (21). Integrals
with |r| > 1 are still of Gaussian type and can easily be
carried out as long as λ2(β, q0) > 0 is sufficiently large.
While all integrations for |r| > 2 just provide factors 1/λr

like in conventional PSPA, the integrals over q2 and q−2 =
q∗2 require special care. To this end the variables q2 and q−2

are transformed to variables q′2 = Re q2 and q′′2 = Im q2

which cast the relevant part of (22) in the form

a(β, q0, q
′
2, q

′′
2 ) = λ2(β, q0) (q′2)

2 (26)
+3
(
c−3 (β, q0) q2

−1 + c+
3 (β, q0) q2

1

)
q′2

+λ2(β, q0) (q′′2 )2

+3i
(
c−3 (β, q0) q2

−1 − c+
3 (β, q0) q2

1

)
q′′2 .

The corresponding two Gaussian integrals can be easily
solved:

β

π|k|

∫
dq′2dq′′2 exp

(
− β

|k| a(β, q0, q
′
2, q

′′
2 )
)

=
1

λ2(β, q0)
exp

(
β

|k|
9c−3 (β, q0)c+

3 (β, q0)
λ2(β, q0)

q2
1q

2
−1

)
.

(27)

What is left are the q1-integrals. These are integrals
over an exponential with an exponent given by

λ1(β, q0) q1q−1 + B(β, q0) q2
1q

2
−1 , (28)

where the coefficient B(β, q0) is defined as

B(β, q0) = 6c4(β, q0) −
9c−3 (β, q0)c+

3 (β, q0)
λ2(β, q0)

· (29)
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To proceed further it is convenient to introduce polar co-
ordinates ρ and φ instead of q1 and q−1 = q∗1 , such that
the phase integral can be done. After an additional sub-
stitution z = ρ2 the q1 integrals reduce to

β

π|k|

∫ 2π

0

dφ

∫ ∞

0

dρ ρ exp
(
− β

|k|
(
λ1 ρ2 + B ρ4

))

=
β

|k|

∫ ∞

0

dz exp
(
− β

|k|
(
λ1(β, q0) z + B(β, q0) z2

))
.

(30)

Eventually, together with the contributions from (27)
and (30) the expression (21) for the new dynamical factor
reads in “extended PSPA”

CePSPA(β, q0) =
∏
r>1

1
λr(β, q0)

× β

|k|

∫ ∞

0

dz exp
(
− β

|k|
(
λ1(β, q0)z + B(β, q0)z2

))
.

(31)

In case that q1 fluctuations are small so that third
and fourth order terms in q1 and q−1 are negligible –
B(β, q0) � λ1(β, q0) – the factor CePSPA(β, q0) reduces
to CPSPA(β, q0) (see (19)). For temperatures T < T0 and
q0 for which λ1 < 0 but |λ1| again sufficiently large, the
integral in (31) can be evaluated in stationary phase ap-
proximation. The result is

CePSPA(β, q0) =
∏
r>1

1
λr(β, q0)

×
√

2πβ

|k|B(β, q0)
exp

(
β

|k|
λ2

1(β, q0)
4B(β, q0)

)
· (32)

Here, the exponential reveals the change of stability at
T = T0 as now the contribution to Z(β) of those q0

where λ1 < 0 is enhanced compared to their static value
exp[−βFSPA(β, q0)].

The ePSPA smoothly connects the temperature range
above T0 with that below T0. Its precise lower bound of
validity is determined by two conditions: B(β, q0) defined
in (29) and λ2(β, q0) (see (17)) must both be positive and
sufficiently large for all q0. Even if B > 0 also for T < T0

the ePSPA definitely fails at T = T0/2 where λ2 vanishes.
Physically, the instability of the PSPA at T = T0 corre-
sponds to an instability in q1 direction in functional space
of that classical mean field solution q0 = qc

0 for which
λ1(1/T0, q

c
0) = 0. At the temperature where the ePSPA

breaks down, i.e. where λ2 = 0, the classical field at qc
0

becomes unstable in q2 direction in functional space. This
scenario proceeds with decreasing temperature.

2.3 Treatment of low temperatures T � T0

In the last section we have proposed an extension of the
conventional PSPA that is applicable down to tempera-
tures not too far below T0. As already mentioned, this

approximation breaks down near λ2 = 0 where the q2-
mode amplitude becomes large. Naively, one could think
to “regularize” the q2-mode divergency in the same way
as for the q1-mode around T0. However, if both q1 and q2

are large even higher order coupling terms to qr modes
(|r| > 2) in the expansion must be taken into account
(compare our remark after Eq. (22)). This proceeds to
the divergencies at λ3 = 0 and so on. Hence, practically
an analytical treatment analogous to the T0 case is no
longer possible for temperatures T � T0. In particular,
for T → 0 all modes qr must be assumed to be large so
that in the worst case any kind of semiclassical approxi-
mation to Z(β) fails.

On the other hand, for T � T0, but still T > 0, we
expect that integrals of the type (5) are dominated by
the contributions around the minima qmin

0,i , i = 1, . . . , M

of the intrinsic free energy (6) provided βFSPA(β, qc
0) ex-

ceeds βFSPA(β, qmin
0,i ) by terms sufficiently larger than of

order 1. Under the additional condition that the correction
factor CePSPA(β, q0) is a smooth function of q0 compared
to the exponential we can apply a saddle point approxi-
mation to evaluate (5) together with (31):

ZePSPA(β) ≈
M∑
i=1

1√
|k| d2FSPA/dq2

0 |qmin
0,i

(33)

× exp
[
−βFSPA(β, qmin

0,i )
]

CePSPA(β, qmin
0,i ).

The assumption that CePSPA(β, q0) is smooth compared to
exp[−βFSPA(β, q0)] – variations of the dynamical factor
are negligible on the scale on which the exponential varies
– bases on the fact that all approximations of SPA type are
semiclassical approximations. This condition is certainly
not fulfilled in regions where the dynamical factor di-
verges. The divergencies, occuring whenever λr(β, q0) = 0
(r > 1) only appear in those q0-regions where the RPA fre-
quencies are imaginary and of sufficiently large amount,
thus, corresponding to saddle points of the full free en-
ergy. Therefore we may assume that they need not be con-
sidered for low temperatures (but still sufficiently above
T = 0). Accordingly, the following interpolation between
the ePSPA and the saddle point approximation (33) seems
to be natural: For T � T0 we restrict the q0 integration
in (5) with (31) to those regions where λ1 > 0 meaning
that all λr > 0, i.e.,

CLTA(β, q0) = θ[λ1(β, q0)] CePSPA(β, q0) (34)

where θ(·) denotes the step function. This interpolation
is called “low temperature approximation” (LTA) hence-
forth. It requires to solve λ1(β, qc

0) = 0 for given β > β0 =
1/T0 to determine qc

0(β). As a continuous function of β
starting at qc

0(β0), qc
0(β) describes the broadening of the

instability region around qc
0(β0) where λ1 < 0 [23]. The

ePSPA extends to temperatures somewhat below T0, while
the LTA is valid if with decreasing temperature T < T0 the
contribution of the instability region around qc

0(β0) to the
q0 integral becomes negligible. Therefore both approxi-
mations match in a narrow temperature range below T0.
Further, by formally extending the LTA to T > T0 one
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recovers the ePSPA since then λ1 > 0 for all q0, while for
T � T0 the saddle point result (33) is regained. As al-
ready mentioned, in general there is a lower bound for the
LTA. Contributions of mean fields around qc

0 can only be
neglected as long as the exponential enhancement in (32)
due to the dynamical instability is still compensated for
by the difference between FSPA(β, qc

0) and FSPA(β, qmin
0,i ).

For very low temperatures this can no longer be taken for
granted.

We want to remark that for specific systems further
approximations may exist in the region T � T0, possibly
better adapted to the problem in question. This may be
particularly true for very low temperatures T → 0 if new
phenomena, sometimes associated with the appearance of
new symmetries like in the case of Goldstone modes, re-
quire special care (cf. the cases of a one-dimensional dou-
ble well and the Lipkin-Meshkov-Glick model below in
Sects. 3 and 4). As long as one is interested in approxima-
tion schemes applicable to general situations without re-
ferring to individual system properties, however, the LTA
presented above seems to us the only consistent one.

3 Application I: One dimensional potential

In order to illustrate the utility of the the above approxi-
mations we turn to exactly solvable models and first apply
the formalism to the one-dimensional case.

Consider a particle of mass M in a one dimensional
potential V (q). The imaginary time path integral repre-
sentation is given by

Z(β) =
∫

dq′
∮

q′
Dq(τ) exp

(
−SE[q(τ), q̇(τ)]/~

)
(35)

with the Euclidean action

SE[q(τ), q̇(τ)] =
∫

~β

0

dτ

(
M

2
q̇2(τ) + V (q(τ))

)
. (36)

In (35) we first have to sum over all paths q(τ) starting
and ending at a given end-point q(0) = q(~β) = q′ and
second sum up contributions from all these end-points q′.

In order to be able to apply the ideas of Section 2.2,
the potential must be expanded up to fourth order in the
Fourier coefficients qr (|r| > 0) introduced in (3). After
carrying out the τ integration we obtain for the exponent:

−SE[qr]/~ = −βV (q0) − β
∑
r>0

(
Mν2

r + V ′′(q0)
)
|qr|2

−βV (3)(q0)
3!

∑
r,s,t6=0

δr+s+t,0 qrqsqt (37)

−βV (4)(q0)
4!

∑
r,s,t,u6=0

δr+s+t+u,0 qrqsqtqu .

For the case of one dimensional potentials the sum rule
r+s+t+u = 0 simply stems from this τ integration. Here
V (q0) plays the same role as FSPA(β, q0) in (5). As before

the coefficients q1 and q−1 become large at the crossover
temperature

T0 = maxq0

~

2π

√
−V ′′(q0)

M
(38)

and therefore have to be taken into account up to fourth
order. Then, with λr(β, q0) ≡ Mν2

r + V ′′(q0), c+
3 (β, q0) =

c−3 (β, q0) ≡ V (3)(q0)/3!, and c4(β, q0) ≡ V (4)(q0)/4! we
gain

Z(β) =

√
M

2π~2β

∫
dq0 exp [−βV (q0)] C(β, q0). (39)

In case of the pure SPA we have CSPA(β, q0) ≡ 1, in case
of the conventional PSPA

CPSPA(β, q0) =
∏
r>0

Mν2
r

Mν2
r + V ′′(q0)

, (40)

and for the extended PSPA

CePSPA(β, q0) =
∏
r>1

Mν2
r

Mν2
r + V ′′(q0)

(41)

×
∫ ∞

0

dz exp

{
− β

[ (
Mν2

1 + V ′′(q0)
)
z

+
1
4

(
V (4)(q0) −

(V (3)(q0))2

Mν2
2 + V ′′(q0)

)
z2

]}
·

Let us now turn to the specific case of a particle of
mass M = 1/2 (~ = 1) moving in the quartic potential

V (q)=−Λ q2+(1−Λ) q4+
Λ2

4(1 − Λ)
with 0 ≤ Λ < 1.

(42)

This potential coincides with a quartic oscillator for Λ = 0
and develops a barrier of height V (0) = Λ2/(4(1−Λ)) for
positive Λ. Potentials of the form (42) have often been
used to qualitatively understand characteristic properties
of high dimensional systems as e.g. phase transitions. Here
we find that the shape of V (q) describes the main features
encoded in the intrinsic free energy of the Lipkin-Meshkov-
Glick model which we will consider in detail below (see
Sect. 4.2). There, the appearance of a phase transition is
equivalent to the development of a barrier for Λ > 0 in
V (q). Further, from (38) and (42) the inverse crossover
temperature can simply be derived as β0 = 1/T0 = 2π/~ ·√

M/(2Λ) = π/(~
√

Λ). In Figure 1 the free energy

F(β) = − 1
β

lnZ(β) (43)

is depicted within various approximations for Λ = 0.9.
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Fig. 1. F(β) of the double well (42) computed for various
approximations and Λ = 0.9.

4 Application II: The Lipkin-Meshkov-Glick
model

The approximations derived in the preceding sections
are designed to describe low temperature thermodynamic
properties of interacting many body systems. In contrast
to simple one-dimensional cases, here, an additional chal-
lenge arises through the calculation of the expansion co-
efficients in (14) and (23–25).

4.1 Expansion coefficients for many body systems

For the Hamiltonian (1) the coefficients c±3 and c4 are
calculated by evaluating the τ -integrals in (23–25). The
calculation is performed completely parallel to the one
presented in [7]. Hence, we restrict ourselves here to one
contribution to the fourth order coefficient to exemplify
the general strategy. We also will prove the sum rule
r + s + t + u = 0 exploited in (22–25) here. To this end
we consider general indices r, s, t, u 6= 0 at first. One has
to rewrite the operators F̂ (τ) in terms of creation and an-
nihilation operators F̂ (τ) =

∑
kj Fkj â

†
k(τ)âj(τ) and then

calculate the time ordered averages using the finite tem-
perature Wick theorem [2]. Evaluating all possible con-
tractions the unperturbed temperature Green functions
enter, i.e.

−〈T̂ âj(τr)â
†
k(τs)〉q0 = δjk g

(0)
k (τr − τs) (44)

= δjk
1
β

∞∑
K=−∞

e−iωK(τr−τs)

i~ωK − ek(q0)
,

where ωK = (2K + 1)π/~β (2) and ek(q0) corresponds
to the eigenenergies of (8) via ek(q0) = εk(q0) − µ. The
integrands of all multiple τ integrals therefore turn into
factors like e.g.

exp
(

i
2π

~β
(r + I − O) τr

)
. (45)

2 Mind that our ωK correspond to the νk of [7] and our νr

are equivalent to the ωr of [7].

After carrying out all τ integrals we obtain the conditions
r + I − O = 0, s − I + K = 0, t − K + M = 0 and
u + O − M = 0. Putting these conditions together we
easily obtain the requirement

r + s + t + u = 0. (46)

Moreover, we have only one summation index I =
−∞ . . .∞ left besides r, s, t 6= 0 which will actually be
further restricted by the requirement r, s, t, u = ±1,±2
in (23) – (25). One can show after some straightforward
but lengthy algebra that one typical contribution to the
fourth order coefficient c4(β, q0) reads:

−|k|/β

4!

∑
i,k,m,o

Fio(q0)Fki(q0)Fmk(q0)Fom(q0)

×
∞∑

I=−∞

1
i~ωI − ei(q0)

1
i~(ωI + νr) − eo(q0)

(47)

1
i~(ωI − νs) − ek(q0)

1
i~(ωI − νs+t) − em(q0)

·

The infinite sum over I is calculated by exploiting the fre-
quency summation technique [24]. One uses the replace-
ment iωI → z and the residue theorem for contour integra-
tion in the complex z-plane together with the observation
that the function −~β/(exp(~βz) + 1) has poles at iωI

with residues 1. After a deformation of the integration
contour such that it encycles the poles of (47) we obtain
the following final form:

|k|
4!

∑
i,k,m,o

Fio(q0)Fki(q0)Fmk(q0)Fom(q0) (48)

×
{

n(εi)
1

εio + i~νr

1
εik − i~νs

1
εim − i~νs+t

+ n(εo)
1

εoi − i~νr

1
εok − i~νr+s

1
εom − i~νr+s+t

+ n(εk)
1

εki + i~νs

1
εko + i~νr+s

1
εkm − i~νt

+ n(εm)
1

εmi + i~νs+t

1
εmo + i~νr+s+t

1
εmk + i~νt

}
·

Here n(ε) = (1+exp(β(ε−µ)))−1 are the Fermi occupation
numbers and εik(q0) are the energy differences between the
states |i(q0)〉 and |k(q0)〉 of the static Hamiltonian ĥ0(q0).
This way, by solving the static one body Schrödinger equa-
tion belonging to (8) and evaluating sums as in (48) all
needed coefficients are known and the corresponding ap-
proximations to Z(β) can be applied.

We note that the factor in brackets in (48) also ap-
pears in [7] where strength functions are calculated in
the conventional PSPA formalism. There, time ordered
expectation values of products of one body operators
D̂ =

∑
kj Dkj â

†
kâj like 〈T̂ ÛqD̂

†(τ)D̂(0)〉q0 are evaluated.
To this end Ûq [see (11) and (14)] has to be expanded up
to second order in the qr. As a consequence, fourth or-
der terms in â†

k(τ)âj(τ) come into play even though the
approximation to Ûq is still of Gaussian type.
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4.2 The model

There are only few many body systems which allow for
an exact evaluation. One is the Lipkin-Meshkov-Glick
model [17] which has been used to test the results of con-
ventional PSPA for years (see e.g. [6,7,9]). In the last
part of the paper we want to apply the approximations
derived in Section 2 to this model. The Lipkin-Meshkov-
Glick Hamiltonian reads

Ĥ = 2εĴz + 2kĴ2
x , (49)

and has the structure of a Hamiltonian with two body
interaction with Ĥ = 2εĴz and F̂ = 2Ĵx. In (49) the op-
erators Ĵx and Ĵz obey angular momentum commutation
relations and k = −|k| is a negative coupling constant
describing an attractive interaction.

Let us briefly recall [6,7,9] the most important features
of the PSPA applied to the Hamiltonian (49). The static
part (8) of the one body Hamiltonian is given by

ĥ0(q0) = 2εĴz + 2q0Ĵx (50)

and its eigenvalues are g-fold degenerated

ε̄2(q0) = ε2 + q2
0 . (51)

Energy differences εik(q0) can therefore only have the
three different values 0,±2ε̄(q0). For the grand canonical
partition function belonging to (50) one easily obtains at
a given collective coordinate q0 [see (7)]

z(β, q0) =
(

2 cosh
(

βε̄(q0)
2

))2g

. (52)

The PSPA correction factor (19) can be written as

CPSPA(β, q0) =
sinh(βε̄(q0))

βε̄(q0)
~β$(β, q0)/2

sinh(~β$(β, q0)/2)
(53)

where the RPA frequencies read(
~$(β, q0)

2

)2

= ε̄2(q0) − κ
ε3

ε̄(q0)
tanh

(
βε̄(q0)

2

)
, (54)

with the dimensionless coupling parameter(3)

κ =
|k|g
ε

> 0. (55)

For κ > 1 the equilibrium value of q0 undergoes a phase
transition at a critical temperature Tc which is deter-
mined from the condition that one can find a q0 with
zero RPA frequency from (54). This phase transition man-
ifests itself in the development of a barrier in the intrinsic
free energy for T < Tc corresponding to imaginary RPA
frequencies. Thus, the crossover temperature T0 where
the factor (53) diverges is determined from the condi-
tion (~β$(β, q0)/2)2 = −π2. We note that one always
has T0 < Tc. For κ < 1 no phase transition occurs and the
RPA frequencies are always real.

3 Our κ is defined as in [7] and should not be mixed up with
the κ = 1/k often used in nuclear physics [18].
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Fig. 2. F(β) of the Lipkin-Meshkov-Glick model (49) within
various approximations for the parameters (56) and κ = 1.313.
The phase transition occurs at βc = 0.4 MeV−1 and the inverse
crossover temperature is β0 = 1.1392 MeV−1.

4.3 Free energy

For the Lipkin-Meshkov-Glick model the free energy has
been calculated in [7] within the conventional PSPA. Here,
we want to demonstrate the results of the extensions pro-
posed above using the same set of parameters as in [6],
namely,

ε = 5 MeV and g = 10 (56)

and various values for κ.
In Figures 2–3c we present plots of the free energy (43)

as a function of the inverse temperature β. Figure 2 shows
the global behavior for κ = 1.313 (the value used in [6]).
Figures 3a–c illustrate a blow up of the region around T0

for three different coupling strengths. The exact result can
be obtained by a numerical diagonalization of the Hamil-
tonian (49) in a basis of eigenstates of Ĵz or Ĵx as explained
in [6,7,9]. As expected, pure SPA deviates strongly from
the exact results with decreasing temperature. For κ < 1
no phase transition occurs and the difference between con-
ventional and extended PSPA is very small (see Fig. 3a).
The inclusion of quantum effects on the RPA level in the
conventional PSPA (19) improves the results a lot as long
as β is not too close to the breakdown value β0 = 1/T0 (see
Fig. 2). Here the conventional PSPA fails as the correc-
tion factor diverges for κ > 1. Instead, the extension (31)
smoothly passes the crossover region and agrees very well
with exact results even for inverse temperatures slightly
above β0. The ePSPA definitely breaks down near β = 2β0

where λ2 = 0. The LTA (see Sect. 2.3) smoothly matches
with the ePSPA somewhat below β0 and is able to cover
even the range β � β0 with astonishing accuracy.

One can also see in Figure 3b that the matching be-
tween ePSPA and LTA even though it appears to be con-
tinuous in temperature, may lead to discontinuities in first
and higher order derivatives. The latter ones produce un-
physical results for the internal energy and specific heat
(see below) around the matching point close to T0. This
kind of behavior is typical for the matching between dif-
ferent semiclassical approximations each one designed for
different ranges in parameter space. It can be overcome
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Fig. 3. Blow up of the crossover region for F(β) of the Lipkin-Meshkov-Glick model (49) within various approximations.
Parameters are as in (56). For κ = 0.8 no phase transition occurs: T0 = 0. For κ = 1.313 the inverse crossover temperature is
β0 = 1.1392 MeV−1 whereas for κ = 1.8 the corresponding value is β0 = 0.7433 MeV−1.
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Fig. 4. E(β) of the Lipkin-Meshkov-Glick model (49) for the
parameters of (56) and κ = 1.313. The phase transition occurs
at βc = 0.4 MeV−1 and the inverse crossover temperature is
β0 = 1.1392 MeV−1.

in principle by invoking uniform semiclassical approxima-
tions. Apart from that the ePSPA together with the LTA
provide a practicable and very efficient way to evaluate
the free energy over a broad temperature range.

4.4 Internal energy and specific heat

The internal energy (comp. [6])

E(β) = − ∂

∂β
lnZ(β) (57)

is shown in Figure 4. In the crossover region β ≈ β0 the ex-
tended PSPA again is an improvement over conventional
PSPA but tends to fail for larger β. The low temperature
approximation of Section 2.3 delivers reasonable values for
β > β0. As already mentioned above, it shows unphysical
discontinuities close to β0 = 1/T0.

The specific heat of the system (comp. [6])

C(β) = β2 ∂2

∂β2
lnZ(β) (58)

is seen in Figure 5. Pure SPA turns out to provide a rea-
sonable global approximation of the specific heat over a
broad range of temperatures, whereas the conventional
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Fig. 5. C(β) of the Lipkin-Meshkov-Glick model (49) for the
parameters of (56) and κ = 1.313. The phase transition occurs
at βc = 0.4 MeV−1 and the inverse crossover temperature is
β0 = 1.1392 MeV−1.

and extended PSPA lead to very good results at higher
temperatures, smaller β, but deviate already for β < β0.
The LTA of Section 2.3 again shows a discontinuity at
β = β0 and supplies a reasonable estimate for β > β0.

4.5 Level densities

As already mentioned in the introduction the develop-
ment of the conventional PSPA was motivated to some
extent by the need to calculate nuclear level densities as
a function of the excitation energy E∗. Given the parti-
tion function this can be achieved by an inverse Laplace
transform. Within a saddle point approximation (Darwin-
Fowler method) one finds the inverse thermal temperature
β∗ from E∗ = E(β∗) − E0 and arrives at the following for-
mula for the level density [25]:

ρ(E∗) =
1√

2πD
exp[S(β∗) − β∗E0] . (59)

The entropy is given by S(β) = β [E(β) −F(β)] and

D =

∣∣∣∣∣
(

∂2

∂β2
lnZ(β)

)
β=β∗

∣∣∣∣∣ =
∣∣∣∣ 1
(β∗)2

C(β∗)
∣∣∣∣ . (60)

Results are depicted in Figure 6. Here, high excitation
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Fig. 6. ln ρ(E∗) of the Lipkin-Meshkov-Glick model (49) for
the parameters of (56) and κ = 1.313. E∗ is measured in MeV.

energies correspond to high temperatures. For this reason
approximations of SPA type are expected to be exact at
large E∗ as confirmed in Figure 6. For low excitations the
situation is different. The pure SPA is not able to deliver
results for E∗ . 4 MeV. The reason is simply that the
SPA result for the internal energy is about 4 MeV larger
than the exact result at small temperatures (see Fig. 4)
and therefore the condition E(β∗) − E0 = E∗ . 4 MeV
cannot be fulfilled within SPA. The conventional and ex-
tended PSPA results agree with the exact ones much bet-
ter than those of pure SPA. Essential deviations only occur
for E∗ . 2 MeV and the extended version is a little better
than the conventional one (see Fig. 7).

The main problem of the conventional and extended
PSPA with respect to the level density can be traced back
to the quantity D of (60) that is proportional to the spe-
cific heat C(β∗) and enters in the denominator of (59).
Divergencies in the specific heat as seen for PSPA and
ePSPA in Figure 5 therefore have a tremendous impact
on the results for the level density. Therefore both types
of PSPA deliver level densities that are too small which
becomes significant at small excitations corresponding to
β & β0. The following strategy seems to be reasonable: In
order to calculate the level density using (59) we exploit an
approximation for the specific heat that is globally reason-
able and combine it with the best approximation at hand
for the internal and free energy. That means to use pure
SPA (see Fig. 5) for the specific heat and the ePSPA/LTA
for the remaining quantities. As shown in Figure 7 this
procedure improves the conventional and extended PSPA
a great deal at low excitations. Remarkably, it even de-
scribes the bending up of the level density qualitatively
correct.

5 Conclusion

We have applied the path integral approach to approxi-
mately evaluate the partition function of a finite interact-
ing many body system in the low temperature regime.
This requires to extend the conventional PSPA down
to temperatures below the crossover temperature T0. At
these temperatures the simple mean field solution becomes
unstable and large quantum fluctuations arise. The crucial
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Fig. 7. Magnification of Figure 6 for small excitations.

step is to go beyond the Gaussian approximation on which
the PSPA relies and take into account anharmonicities of
certain critical vibrational modes. This procedure stabi-
lizes the semiclassical type of approximation to the path
integral of the partition function and holds true down to
temperatures T ≈ T0/2. There, an instability in another
direction in functional space shows up, which successively
proceeds to occur at all Tr = T0/r (r > 1). In order to
treat the temperature range T � T0, but still sufficiently
above T = 0, we proposed an approximation where only
mean fields with small quantum fluctuations around the
minima of the static free energy are taken to contribute.

In this way, we could study thermodynamic properties
of the archetypical Lipkin-Meshkov-Glick model even far
below the crossover temperature. In particular, for the free
and internal energies results were gained, that agree very
well to the exact ones. Combining our extensions to the
PSPA with pure SPA we obtained very accurate results
for the level density even at low excitation energies.

Improvements beyond the PSPA for T ≈ T0 and T �
T0 are desirable in order to get reasonable approximate re-
sults for many body systems in the low temperature range
where usual Monte Carlo techniques become very expen-
sive. This is particularly true as often the critical tem-
perature Tc where a phase transition takes place and the
crossover temperature T0 where the PSPA breaks down
are of the same order of magnitude. For instance, for finite
nuclei one finds for the nucleus 164Er that Tc ≈ 0.45 MeV,
while PSPA is reliable only for T > 0.25 MeV [14]. In [10]
the range of applicability of PSPA is given by T > 0.2 MeV
for the nuclei 104Pd and 114Sn.

In general, for these or even lower temperatures (of
the order of 10−1 MeV and below for nuclei) the concept of
temperature is at least doubtful for small isolated systems.
This is different for systems on a mesoscopic scale. There
the coupling to a macroscopic heat bath is always present
such that temperature can be fixed from outside. Further,
the number of constituents is typically much larger as e.g.
for finite nuclei. Accordingly, as addressed above, the con-
ventional PSPA has been applied to small superconduct-
ing and superfluid systems. For superconducting particles
of nanometer scale one roughly finds T0 ≈ Tc/2 [15] so
that an extension of the PSPA is clearly relevant. Work
in this direction is in progress.



C. Rummel and J. Ankerhold: The partition function of an interacting many body system 115

One of the authors (C.R.) would like to thank H. Hofmann
for critical and fruitful discussions and A. Ansari for helpful
comments. C.R. and J.A. thank for the kind hospitality at
the ECT∗, Trento, Italy, during the workshop and collabora-
tion meeting “Transport in Finite Fermi Systems” in May 2000
where part of this work was done.

References

1. D. Ralph, C. Black, M. Tinkham, Phys. Rev. Lett.
74, 3241 (1995); C. Black, D. Ralph, M. Tinkham,
Phys. Rev. Lett. 76, 688 (1996); D. Ralph, C. Black, M.
Tinkham, Phys. Rev. Lett. 78, 4087 (1997)

2. J.W. Negele, H. Orland, Quantum Many-Particle Systems
(Addison-Wesley, Reading, MA, 1988)

3. J. Callaway, Quantum Theory of Solid State (Academic
Press, London, 1991)

4. B. Mühlschlegel, D. Scalapino, R. Denton, Phys. Rev. B
6, 1767 (1972)

5. Y. Alhassid, J. Zingman, Phys. Rev. C 30, 684 (1984)
6. G. Puddu, P. F. Bortignon, R.A. Broglia, Ann. Phys. (San

Diego) 206, 409 (1991)
7. H. Attias, Y. Alhassid, Nucl. Phys. A 625, 565 (1997)
8. R. Rossignoli, N. Canosa, Phys. Lett. B 394, 242 (1997)
9. R. Rossignoli, P. Ring, Nucl. Phys. A 633, 613 (1998)

10. B.K. Agrawal, A. Ansari, Phys. Lett. B 421, 13 (1998)
11. B.K. Agrawal, S.K. Samaddar, J.N. De, S. Shlomo,

Phys. Rev. C 58, 3004 (1998)

12. C. Rummel, H. Hofmann, Phys. Rev. E 64, 066126 (2001)
13. H. Hofmann, D. Kiderlen, Int. J. Mod. Phys. E 7, 243

(1998)
14. R. Rossignoli, N. Canosa, P. Ring, Ann. Phys. 275, 1

(1999)
15. R. Rossignoli, J.P. Zagorodny, N. Canosa, Phys. Lett. A

258, 188 (1999); N. Canosa, R. Rossignoli, Phys. Rev.
62, 5886 (2000); R. Rossignoli, N. Canosa, Phys. Rev. 63,
134523 (2001)

16. J.M. Martinis, M.H. Devoret, J. Clarke, Phys. Rev. B 35,
4682 (1987)

17. H.J. Lipkin, N. Meshkov, A.J. Glick, Nucl. Phys. 62, 188
(1965)

18. A. Bohr, B.R. Mottelson, Nuclear Structure (Benjamin,
London, 1975), Vol. 2

19. N. Canosa, R. Rossignoli, Phys. Rev. C 56, 791 (1997)
20. R.L. Stratonovich, Dokl. Akad. Nauk. SSSR 115, 1097

(1957) [Sov. Phys. Dokl. 2, 416 (1958)]; J. Hubbard,
Phys. Rev. Lett. 3, 77 (1959)

21. H. Hofmann, Phys. Rep. 284 (4&5), 137 (1997)
22. H. Grabert, U. Weiss, Phys. Rev. Lett. 53, 1787 (1984); H.

Grabert, P. Olschowski, U. Weiss, Phys. Rev. B 36, 1931
(1987)

23. For the case of the density matrix for one-dimensional sys-
tems this has been discussed in detail in J. Ankerhold, H.
Grabert, Physica A 188, 568 (1992)

24. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-
Particle Systems (McGraw-Hill, New York, 1971)

25. A. Bohr, B.R. Mottelson, Nuclear Structure (Benjamin,
London, 1975), Vol. 1


